Nota importante: En el momento de escribir esto, algunos navegadores no permiten escuchar el sonido generado por el comando TocaSonido de GeoGebra. En tal caso, dispones de dos opciones:
El curioso comportamiento de una cuerda al vibrar generó un interés excepcional entre los matemáticos, dando lugar a una de las controversias más encendidas y fructíferas en la historia de las Matemáticas.
Hasta el siglo XVIII, la matemática no se encuentra lo suficientemente avanzada para abordar este problema. En 1715, Brook Taylor encuentra que el movimiento de un punto arbitrario de la cuerda es el de un péndulo simple y, como consecuencia, la forma de la curva que toma la cuerda en un instante dado debería ser sinusoidal.
Pero el sonido fundamental correspondiente a esa vibración pendular no es el único que emite la cuerda al vibrar. Simultáneamente, se producen otros sonidos (parciales) de menor intensidad. La distribución e intensidad de estos parciales (timbre) diferencian instrumentos o voces que ejecuten la misma nota.
En el caso de los instrumentos de cuerda y viento, las frecuencias de estos parciales son múltiplos de la frecuencia fundamental F. De estos múltiplos (armónicos), el primero es la propia frecuencia fundamental, el segundo el doble (2F), el tercer armónico el triple (3F), etc.
Ahora bien, lo curioso es que la cuerda no varía alternativamente entre un armónico y otro, sino que emite todos los sonidos armónicos al mismo tiempo. He aquí la miga de la cuestión, causa de intriga y discusión entre los matemáticos: ¿cómo se las arregla la cuerda para vibrar de varias formas distintas a la vez? Esto es lo que se preguntaban matemáticos geniales como D'Alembert, Daniel Bernoulli, Euler, Fourier y Dirichlet. |
Preguntas
Primer armónico
Segundo armónico
Tercer armónico
Cuarto armónico
Quinto armónico
Sumando armónicos
|