Grupo 9 (22*, pmg)

Si no lo has hecho ya, lee primero la información general sobre los grupos de isometrías de los mosaicos periódicos, pulsando sobre la siguiente imagen:

 


Grupos de isometrías de mosaicos

 

Es recomendable que sigas el orden numérico de los grupos.

 

En esta actividad explorarás el grupo 9 (22*, pmg). Es el último de los cinco grupos de mosaicos que se pueden crear con azulejos con forma de rectángulo, además de aquellos que ya hemos visto que se pueden formar con romboides (pues podemos considerar un rectángulo como un caso particular de romboide). Es decir, además de trasladar el azulejo o rotar antes 180º el motivo decorativo dentro del azulejo (grupos o y 2222), ahora, gracias a la mayor simetría del rectángulo, aparecen cinco grupos posibles más, los grupos **, xx, *2222, 22x y 22*.

Preguntas

  1. Varía de posición el vértice de la celda primitiva (punto verde) y observa el efecto. ¿Qué tipo de isometrías (rotaciones o reflexiones) puedes apreciar en el azulejo?

  2. La parte blanca del azulejo donde colocamos el motivo decorativo (el cisne) se denomina "Celda primitiva". En este caso, esta celda es un cuarto (1/4) del azulejo. Desactiva y activa esa casilla para ver el efecto producido. Explica cómo se ha dividido el azulejo en cuatro partes.

  3. Deja activada la casilla "Celda primitiva" y activa las casillas "Aplicar simetrías" y Azulejo. Describe qué sucede y por qué. Compara la forma de crear el azulejo con la forma empleada en el grupo 7 (*2222). ¿En qué se parecen? ¿Por qué no se obtiene el mismo azulejo?

  4. Activa la casilla "Vectores de traslación". Muévelos por el punto medio verde. ¿Qué indican esos vectores? ¿Crees que hay más direcciones en las que se pueda aplicar una traslación?

  5. Desactiva la casilla "Vectores de traslación". Al activar la casilla "Centros de rotación", ¿qué sucede? ¿Dónde aparecen los puntos rojos? ¿Por qué?

  6. Al activar la casilla "Ejes de reflexión", ¿qué sucede? ¿Dónde aparecen las rectas violetas? ¿Por qué?

  7. ¿Crees que el mosaico presenta alguna reflexión desplazada? ¿Dónde se encuentran los ejes de deslizamiento?

  8. Desactiva la casilla "Ejes de reflexión" y activa la casilla "Copiar parte del mosaico". Mueve la copia desplazando la imagen de flechas rojas. ¿Cuánto tienes que desplazar la copia para que vuelva a coincidir con el original? ¿Cómo se llama la isometría que corresponde a esa simetría por desplazamiento?

  9. Activa la casilla Centrar para volver la copia a su posición inicial. Activa la casilla "Rotar cierto ángulo" y elige un ángulo de 180º (puedes usar las teclas + y - del teclado para mayor precisión). Coloca la punta de la chincheta (puedes moverla por su cabeza) exactamente en uno de los puntos rojos. ¿Qué sucede? ¿Por qué? Manteniendo el valor del ángulo de rotación en 180º, mueve la chincheta hasta otro punto rojo. ¿Qué sucede? ¿Por qué? ¿Cuál es el orden de cada uno de esos centros de rotación?

  10. Observa que solo 2 centros destacan. Son aquellos que generan todos los demás al trasladarse o rotar. Compruébalo girando de nuevo la copia azul del mosaico 180º alrededor de esos dos puntos rojos. Sin embargo, en ningún caso uno de esos puntos destacados puede generar al otro. Decimos que esos dos centros de rotación son independientes y denotamos a este grupo de isometrías como 22*, lo que significa que tiene dos centros independientes de rotación y una reflexión cuyo eje no pasa por ellos.

  11. Si el azulejo solo tiene un centro de rotación de orden 2, ¿por qué en el mosaico aparece otro centro independiente?

  12. Desactiva las casillas "Centros de rotación", "Centrar" y "Rotar cierto ángulo". Activa la casilla "Reflejar en la horizontal". ¿Qué representa el segmento violeta? ¿Coincide la copia con el original? ¿Por qué?

  13. Desactiva la casilla "Reflejar en la horizontal" y activa la casilla "Reflexión con desplazamiento". ¿Qué representa el segmento violeta? ¿Coincide la copia con el original? ¿Por qué?

  14. Al crear el azulejo no hemos usado ninguna reflexión con desplazamiento (solo usamos una reflexión de eje horizontal y una rotación de orden 2). ¿A qué crees que se debe entonces la presencia de esa reflexión desplazada en el mosaico?

  15. Si efectuaras una reflexión horizontal seguida de una rotación de orden 2, ¿qué obtendrías? ¿A qué tipo de isometría equivale una composición de una reflexión y una rotación de orden 2? ¿Qué sucedería si rotaras primero la copia 180º y luego realizaras una reflexión horizontal?

  16. Escribe todos los tipos de isometrías presentes en este grupo 22*.

  17. Desactiva las casillas "Celda primitiva", "Aplicar simetrías" y "Copiar parte del mosaico". Activa la casilla "Dibujo libre" y la casilla Rastro. Realiza varios diseños de mosaicos (el lápiz se coge por su extremo superior) y observa el tipo de simetría que aparece en todos ellos, independientemente del motivo decorativo que dibujes.

 

 

 








 INICIO    Creative Commons License Ítem didáctico creado por Rafael Losada Liste.