-
Construye la circunferencia que
pasa por los puntos medios de cada lado. Esta es la circunferencia que se
conoce como "circunferencia de los 9 puntos". Tres de ellos son,
evidentemente, esos puntos medios.
-
¿Qué relación hay entre la
circunferencia de 9 puntos y el triángulo medial?
-
Construye los tres pies de las
alturas. Comprueba que esos tres puntos también están en la circunferencia de
los 9 puntos.
-
Construye el ortocentro y los
tres puntos medios entre el ortocentro y los vértices. Comprueba que esos tres
puntos también están en la circunferencia de los 9 puntos. Usando el clic
derecho (y pestaña Propiedades), cambia a tu gusto el estilo (color,
grosor...) de los objetos creados (puntos, circunferencia).
-
Usando la herramienta "Homotecia
desde un Punto por un Factor de Escala", construye la circunferencia
homotética a la circunferencia de los 9 puntos con centro el ortocentro y
factor de escala 2. (Para usar esas herramienta, haz clic primero en la
circunferencia y después en el ortocentro.) ¿Cómo se llama la circunferencia
que obtienes?
-
¿Qué relación existe entre el
radio de la circunferencia de 9 puntos y el radio de la circunferencia que has
obtenido?
-
¿Qué sucede si construimos una
circunferencia homotética a la circunferencia circunscrita con centro el
ortocentro y factor de escala 0.5? ¿Qué circunferencia obtenemos?
-
¿Qué relación hay entre la
circunferencia de 9 puntos y la circunferencia inscrita? Mueve los vértices
del triángulo ABC para comprobarlo.
-
¿Qué relación hay entre la
circunferencia de 9 puntos y las circunferencias exinscritas? Mueve los
vértices del triángulo ABC para comprobarlo.