Ecuación de segundo grado

Para resolver una ecuación de segundo grado a x2 + b x + c = 0 existen diferentes estrategias particulares, si la ecuación no está completa, si está factorizada o si sus soluciones son números enteros.

 


Pulsa sobre esta imagen
para obtener más información

  

Pero si la ecuación está completa y sin factorizar y las soluciones no son enteras... ¿Qué podemos hacer? En tal caso, podemos recurrir a una conocida fórmula para resolverla. Es lo que se suele hacer porque es lo más rápido. Pero... ¿existen otras formas de resolverla?

 

Por supuesto que sí. En esta actividad veremos otra forma de resolver la ecuación completa. Nos basaremos en el conocimiento de la función cuadrática. Podemos interpretar la parte izquierda de la ecuación como una parábola de vértice en el punto de abscisa x0 = -b/(2a).  Esta información basta para resolver la ecuación.

 

 

Preguntas

  1. Vamos a resolver la ecuación a 4x2 -24x + 27 = 0. Usa la igualdad x0 = -b/(2a) para calcular la abscisa del vértice, x0.

  2. El vértice (x0, y0) es un punto de la gráfica de la parábola, así que debe cumplir su ecuación. Sustituye en la ecuación de la parábola, y = 4x2 -24x + 27, el valor obtenido de x0 y calcula el correspondiente valor y0.

  3. Una vez que ya conoces el vértice de la parábola, puedes sustituir la ecuación completa 4x2 -24x + 27 = 0 por la ecuación incompleta 4(x-x0)2 + y0 = 0, que corresponde a la forma canónica de esa función cuadrática. Comprueba en la aplicación que esa forma canónica coincide con la que se muestra en verde.

  4. Resuelve la ecuación despejando el cuadrado y extrayendo después la raíz cuadrada. Llama x1 y x2 a las soluciones. Comprueba en la aplicación que las soluciones x1 y x2 que has encontrado coinciden con las que se muestran en la Vista Algebraica (zona de la izquierda).

  5. Halla, de la misma manera, las soluciones de la ecuación 4x2 - 8x - 5 = 0 (o de cualquier otra ecuación de segundo grado que desees). Compruébalas con la aplicación escribiendo en la barra de entrada la nueva definición de la función cuadrática: f(x) = 4x^2 - 8x - 5.

 

Nota: Observa que no todas las ecuaciones de segundo grado tienen soluciones reales. Para que existan soluciones la función cuadrática debe poseer raíces, es decir, la parábola debe cruzar (o al menos tocar) el eje OX.

 

 

 

 

 

 


 


 

 

 

 

 



 INICIO    Creative Commons License Ítem didáctico creado por Rafael Losada Liste.